Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Bioremediation potential of Cd by transgenic yeast expressing a metallothionein gene from Populus trichocarpa.

Identifieur interne : 000542 ( Main/Exploration ); précédent : 000541; suivant : 000543

Bioremediation potential of Cd by transgenic yeast expressing a metallothionein gene from Populus trichocarpa.

Auteurs : Vinicius Henrique De Oliveira [Royaume-Uni] ; Ihsan Ullah [Royaume-Uni] ; Jim M. Dunwell [Royaume-Uni] ; Mark Tibbett [Royaume-Uni]

Source :

RBID : pubmed:32800252

Descripteurs français

English descriptors

Abstract

Cadmium (Cd) is an extremely toxic environmental pollutant with high mobility in soils, which can contaminate groundwater, increasing its risk of entering the food chain. Yeast biosorption can be a low-cost and effective method for removing Cd from contaminated aqueous solutions. We transformed wild-type Saccharomyces cerevisiae (WT) with two versions of a Populus trichocarpa gene (PtMT2b) coding for a metallothionein: one with the original sequence (PtMT2b 'C') and the other with a mutated sequence, with an amino acid substitution (C3Y, named here: PtMT2b 'Y'). WT and both transformed yeasts were grown under Cd stress, in agar (0; 10; 20; 50 μM Cd) and liquid medium (0; 10; 20 μM Cd). Yeast growth was assessed visually and by spectrometry OD600. Cd removal from contaminated media and intracellular accumulation were also quantified. PtMT2b 'Y' was also inserted into mutant strains: fet3fet4, zrt1zrt2 and smf1, and grown under Fe-, Zn- and Mn-deficient media, respectively. Yeast strains had similar growth under 0 μM, but differed under 20 μM Cd, the order of tolerance was: WT < PtMT2b 'C' < PtMT2b 'Y', the latter presenting 37% higher growth than the strain with PtMT2b 'C'. It also extracted ~80% of the Cd in solution, and had higher intracellular Cd than WT. Mutant yeasts carrying PtMT2b 'Y' had slightly higher growth in Mn- and Fe-deficient media than their non-transgenic counterparts, suggesting the transgenic protein may chelate these metals. S. cerevisiae carrying the altered poplar gene offers potential for bioremediation of Cd from wastewaters or other contaminated liquids.

DOI: 10.1016/j.ecoenv.2020.110917
PubMed: 32800252


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Bioremediation potential of Cd by transgenic yeast expressing a metallothionein gene from Populus trichocarpa.</title>
<author>
<name sortKey="De Oliveira, Vinicius Henrique" sort="De Oliveira, Vinicius Henrique" uniqKey="De Oliveira V" first="Vinicius Henrique" last="De Oliveira">Vinicius Henrique De Oliveira</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Sustainable Land Management & Soil Research Centre, School of Agricultura, Policy and Development, University of Reading, RG6 6AR, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Sustainable Land Management & Soil Research Centre, School of Agricultura, Policy and Development, University of Reading, RG6 6AR</wicri:regionArea>
<wicri:noRegion>RG6 6AR</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ullah, Ihsan" sort="Ullah, Ihsan" uniqKey="Ullah I" first="Ihsan" last="Ullah">Ihsan Ullah</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Agriculture, Policy and Development, University of Reading, RG6 6AR, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Agriculture, Policy and Development, University of Reading, RG6 6AR</wicri:regionArea>
<wicri:noRegion>RG6 6AR</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dunwell, Jim M" sort="Dunwell, Jim M" uniqKey="Dunwell J" first="Jim M" last="Dunwell">Jim M. Dunwell</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Agriculture, Policy and Development, University of Reading, RG6 6AR, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Agriculture, Policy and Development, University of Reading, RG6 6AR</wicri:regionArea>
<wicri:noRegion>RG6 6AR</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tibbett, Mark" sort="Tibbett, Mark" uniqKey="Tibbett M" first="Mark" last="Tibbett">Mark Tibbett</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Sustainable Land Management & Soil Research Centre, School of Agricultura, Policy and Development, University of Reading, RG6 6AR, UK. Electronic address: m.tibbett@reading.ac.uk.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Sustainable Land Management & Soil Research Centre, School of Agricultura, Policy and Development, University of Reading, RG6 6AR</wicri:regionArea>
<wicri:noRegion>RG6 6AR</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32800252</idno>
<idno type="pmid">32800252</idno>
<idno type="doi">10.1016/j.ecoenv.2020.110917</idno>
<idno type="wicri:Area/Main/Corpus">000138</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000138</idno>
<idno type="wicri:Area/Main/Curation">000138</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000138</idno>
<idno type="wicri:Area/Main/Exploration">000138</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Bioremediation potential of Cd by transgenic yeast expressing a metallothionein gene from Populus trichocarpa.</title>
<author>
<name sortKey="De Oliveira, Vinicius Henrique" sort="De Oliveira, Vinicius Henrique" uniqKey="De Oliveira V" first="Vinicius Henrique" last="De Oliveira">Vinicius Henrique De Oliveira</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Sustainable Land Management & Soil Research Centre, School of Agricultura, Policy and Development, University of Reading, RG6 6AR, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Sustainable Land Management & Soil Research Centre, School of Agricultura, Policy and Development, University of Reading, RG6 6AR</wicri:regionArea>
<wicri:noRegion>RG6 6AR</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ullah, Ihsan" sort="Ullah, Ihsan" uniqKey="Ullah I" first="Ihsan" last="Ullah">Ihsan Ullah</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Agriculture, Policy and Development, University of Reading, RG6 6AR, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Agriculture, Policy and Development, University of Reading, RG6 6AR</wicri:regionArea>
<wicri:noRegion>RG6 6AR</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dunwell, Jim M" sort="Dunwell, Jim M" uniqKey="Dunwell J" first="Jim M" last="Dunwell">Jim M. Dunwell</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Agriculture, Policy and Development, University of Reading, RG6 6AR, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Agriculture, Policy and Development, University of Reading, RG6 6AR</wicri:regionArea>
<wicri:noRegion>RG6 6AR</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tibbett, Mark" sort="Tibbett, Mark" uniqKey="Tibbett M" first="Mark" last="Tibbett">Mark Tibbett</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Sustainable Land Management & Soil Research Centre, School of Agricultura, Policy and Development, University of Reading, RG6 6AR, UK. Electronic address: m.tibbett@reading.ac.uk.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Sustainable Land Management & Soil Research Centre, School of Agricultura, Policy and Development, University of Reading, RG6 6AR</wicri:regionArea>
<wicri:noRegion>RG6 6AR</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Ecotoxicology and environmental safety</title>
<idno type="eISSN">1090-2414</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biodegradation, Environmental (MeSH)</term>
<term>Cadmium (metabolism)</term>
<term>Cadmium (toxicity)</term>
<term>Metallothionein (genetics)</term>
<term>Metallothionein (metabolism)</term>
<term>Metals, Heavy (analysis)</term>
<term>Plant Proteins (genetics)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Soil (MeSH)</term>
<term>Soil Pollutants (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cadmium (métabolisme)</term>
<term>Cadmium (toxicité)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Métallothionéine (génétique)</term>
<term>Métallothionéine (métabolisme)</term>
<term>Métaux lourds (analyse)</term>
<term>Polluants du sol (métabolisme)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Sol (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Metals, Heavy</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Metallothionein</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cadmium</term>
<term>Metallothionein</term>
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Cadmium</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Métaux lourds</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Métallothionéine</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cadmium</term>
<term>Métallothionéine</term>
<term>Polluants du sol</term>
<term>Populus</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Cadmium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Soil</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Dépollution biologique de l'environnement</term>
<term>Sol</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cadmium (Cd) is an extremely toxic environmental pollutant with high mobility in soils, which can contaminate groundwater, increasing its risk of entering the food chain. Yeast biosorption can be a low-cost and effective method for removing Cd from contaminated aqueous solutions. We transformed wild-type Saccharomyces cerevisiae (WT) with two versions of a Populus trichocarpa gene (PtMT2b) coding for a metallothionein: one with the original sequence (PtMT2b 'C') and the other with a mutated sequence, with an amino acid substitution (C3Y, named here: PtMT2b 'Y'). WT and both transformed yeasts were grown under Cd stress, in agar (0; 10; 20; 50 μM Cd) and liquid medium (0; 10; 20 μM Cd). Yeast growth was assessed visually and by spectrometry OD
<sub>600</sub>
. Cd removal from contaminated media and intracellular accumulation were also quantified. PtMT2b 'Y' was also inserted into mutant strains: fet3fet4, zrt1zrt2 and smf1, and grown under Fe-, Zn- and Mn-deficient media, respectively. Yeast strains had similar growth under 0 μM, but differed under 20 μM Cd, the order of tolerance was: WT < PtMT2b 'C' < PtMT2b 'Y', the latter presenting 37% higher growth than the strain with PtMT2b 'C'. It also extracted ~80% of the Cd in solution, and had higher intracellular Cd than WT. Mutant yeasts carrying PtMT2b 'Y' had slightly higher growth in Mn- and Fe-deficient media than their non-transgenic counterparts, suggesting the transgenic protein may chelate these metals. S. cerevisiae carrying the altered poplar gene offers potential for bioremediation of Cd from wastewaters or other contaminated liquids.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">32800252</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>08</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1090-2414</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>202</Volume>
<PubDate>
<Year>2020</Year>
<Month>Oct</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Ecotoxicology and environmental safety</Title>
<ISOAbbreviation>Ecotoxicol Environ Saf</ISOAbbreviation>
</Journal>
<ArticleTitle>Bioremediation potential of Cd by transgenic yeast expressing a metallothionein gene from Populus trichocarpa.</ArticleTitle>
<Pagination>
<MedlinePgn>110917</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0147-6513(20)30756-9</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.ecoenv.2020.110917</ELocationID>
<Abstract>
<AbstractText>Cadmium (Cd) is an extremely toxic environmental pollutant with high mobility in soils, which can contaminate groundwater, increasing its risk of entering the food chain. Yeast biosorption can be a low-cost and effective method for removing Cd from contaminated aqueous solutions. We transformed wild-type Saccharomyces cerevisiae (WT) with two versions of a Populus trichocarpa gene (PtMT2b) coding for a metallothionein: one with the original sequence (PtMT2b 'C') and the other with a mutated sequence, with an amino acid substitution (C3Y, named here: PtMT2b 'Y'). WT and both transformed yeasts were grown under Cd stress, in agar (0; 10; 20; 50 μM Cd) and liquid medium (0; 10; 20 μM Cd). Yeast growth was assessed visually and by spectrometry OD
<sub>600</sub>
. Cd removal from contaminated media and intracellular accumulation were also quantified. PtMT2b 'Y' was also inserted into mutant strains: fet3fet4, zrt1zrt2 and smf1, and grown under Fe-, Zn- and Mn-deficient media, respectively. Yeast strains had similar growth under 0 μM, but differed under 20 μM Cd, the order of tolerance was: WT < PtMT2b 'C' < PtMT2b 'Y', the latter presenting 37% higher growth than the strain with PtMT2b 'C'. It also extracted ~80% of the Cd in solution, and had higher intracellular Cd than WT. Mutant yeasts carrying PtMT2b 'Y' had slightly higher growth in Mn- and Fe-deficient media than their non-transgenic counterparts, suggesting the transgenic protein may chelate these metals. S. cerevisiae carrying the altered poplar gene offers potential for bioremediation of Cd from wastewaters or other contaminated liquids.</AbstractText>
<CopyrightInformation>Copyright © 2020 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>De Oliveira</LastName>
<ForeName>Vinicius Henrique</ForeName>
<Initials>VH</Initials>
<AffiliationInfo>
<Affiliation>Department of Sustainable Land Management & Soil Research Centre, School of Agricultura, Policy and Development, University of Reading, RG6 6AR, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ullah</LastName>
<ForeName>Ihsan</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>School of Agriculture, Policy and Development, University of Reading, RG6 6AR, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dunwell</LastName>
<ForeName>Jim M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>School of Agriculture, Policy and Development, University of Reading, RG6 6AR, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tibbett</LastName>
<ForeName>Mark</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Sustainable Land Management & Soil Research Centre, School of Agricultura, Policy and Development, University of Reading, RG6 6AR, UK. Electronic address: m.tibbett@reading.ac.uk.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Ecotoxicol Environ Saf</MedlineTA>
<NlmUniqueID>7805381</NlmUniqueID>
<ISSNLinking>0147-6513</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019216">Metals, Heavy</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>00BH33GNGH</RegistryNumber>
<NameOfSubstance UI="D002104">Cadmium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9038-94-2</RegistryNumber>
<NameOfSubstance UI="D008668">Metallothionein</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="Y">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002104" MajorTopicYN="N">Cadmium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008668" MajorTopicYN="N">Metallothionein</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019216" MajorTopicYN="N">Metals, Heavy</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Biosorption</Keyword>
<Keyword MajorTopicYN="N">Environmental biotechnology</Keyword>
<Keyword MajorTopicYN="N">Functional expression</Keyword>
<Keyword MajorTopicYN="N">Heavy metals</Keyword>
<Keyword MajorTopicYN="N">Transgenic yeast</Keyword>
<Keyword MajorTopicYN="N">Waste treatment</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>04</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>06</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32800252</ArticleId>
<ArticleId IdType="pii">S0147-6513(20)30756-9</ArticleId>
<ArticleId IdType="doi">10.1016/j.ecoenv.2020.110917</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="De Oliveira, Vinicius Henrique" sort="De Oliveira, Vinicius Henrique" uniqKey="De Oliveira V" first="Vinicius Henrique" last="De Oliveira">Vinicius Henrique De Oliveira</name>
</noRegion>
<name sortKey="Dunwell, Jim M" sort="Dunwell, Jim M" uniqKey="Dunwell J" first="Jim M" last="Dunwell">Jim M. Dunwell</name>
<name sortKey="Tibbett, Mark" sort="Tibbett, Mark" uniqKey="Tibbett M" first="Mark" last="Tibbett">Mark Tibbett</name>
<name sortKey="Ullah, Ihsan" sort="Ullah, Ihsan" uniqKey="Ullah I" first="Ihsan" last="Ullah">Ihsan Ullah</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000542 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000542 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32800252
   |texte=   Bioremediation potential of Cd by transgenic yeast expressing a metallothionein gene from Populus trichocarpa.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32800252" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020